

Labs21 Advanced Course Series

High-Performance Laboratory Exhaust Devices

Tom Smith, P.E., M.S. Exposure Control Technologies

Geoffrey C. Bell, P.E., M. Arch. Lawrence Berkeley National Laboratory

Goal: Select Advanced Exhaust Devices

Objectives: At the end of this session, you will be able to:

- Identify different types of exhaust devices
- Describe the process to select appropriate devices for a given context
- Distinguish between standard, good and better practice in selecting devices and assuring their performance

Outline

- Overview
- Design Considerations
- Device Review
- Selection Process
- Design Practice
- Performance Examples
- Conclusion

Overview

High-Performance System

- SAFE- Meets operating specifications and performance requirements.
- DEPENDABLE Predictably performs to meet user demands
- EFFICIENT- Minimum energy use and lowest possible operating costs
- FLEXIBLE Adaptable to changing research needs

Primary Safety Device

- Intended to protect operator(s) health and welfare
- Selected specifically for scientific procedures

HVAC System Interface

- Influences size and life-time performance of a laboratory's heating, ventilation and air conditioning (HVAC) system
- Verify performance and proper installation during final test, balance, and commissioning

Airflow Requirements

- Ensure device containment performance prior to occupying laboratory, especially in "high fume-hood-concentration" labs
- Verify adequate airflow for either internal load demand or air change rate

Needs and Opportunities...

- Improve Containment Capability
- Promote Safe Use and Ergonomics
- Reduce Required Flow / Energy Consumption
- Integrate Monitoring and Control for Dependable Operation
- Minimize Maintenance

Coping with hazardous pollutants

- Potential pollutants
- Sources of pollutants
- Spill scenarios; device application
- User/operator skills and experience
- Egress pathways; device location limitations

Meeting space-conditioning requirements

- Lab layout/arrangement and equipment
- Supply diffuser type and placement
- Return grill location and quantity
- Differential pressure; airflow between rooms; isolation protection
- Diversity: factor assessment
- Hood exhaust flow versus general exhaust flow

Codes

- UBC, UMC, IBC, IMC
- CAL/OSHA 5154.1

Standards

- ANSI/AIHA Z9.5 2003
- NFPA-45 2000
- ACGIH Industrial Ventilation 24th Ed. 2001
- ASHRAE Laboratory Design Guide- 2001
- OSHA 29 CFR Part 1910.1450
- Scientific Equipment & Furniture Association, SEFA 1.2-2003

Know the operating limitations!

Types of Laboratory Exhaust Devices...

- Chemical Fume Hoods
 - Bench-Top, Distillation, Floor mounted (a.k.a. Walk-in), Scale-up
 - Radioactive, Perchloric, Auxiliary Air
 - High Performance, VAV, etc.
- Biological Safety Cabinets
 - Class I, Class II, Class III
 - Type A, Type B1, Type B2

- Laminar Flow Fume Hoods
- Balance/Weighing Hoods
- Canopy Hoods
- Snorkel Exhausts
- Glove Boxes
- Microelectronic Hoods
- Ventilated Enclosures

Types of Laboratory Hoods

- Conventional Fume Hood
- Constant Volume Bypass Fume Hood
- Variable Air Volume Fume Hood
- Restricted Opening Low-Flow Fume Hood
- Low-Velocity Low-Flow (LV/LF) Fume Hood

Vertical Sash Opening

- Most common sash
- Good horizontal access
- Best with sash stop

Vertical , Sash Stop

Horizontal Sash Opening

- Can reduce airflow volume
- May increase worker safety
- Caution sash
 panels can be
 removed; defeats
 safety

Sash Panels

Auxiliary Air Hood...

- Not Recommended
- Reduces containment performance
- Decreases worker comfort
- Disrupts lab temperature and humidity

Distillation Hood

- Specific use
- Convenient experiment setup
- Optimizes experiment observation

Dual Sash Panels

Floor Mounted Hood (Walk-In Hood)

- -Specific use
- -Optimizes experiment observation
- -Limited containment performance

Horizontal Sliding Sash Panels

Ductless Fume Hood

- Particulate Use
- Limited for Gas & Vapors
- Not Recommended for Permanent Installation

Weighing Enclosure – Balance Hood

- -Low-hazard use
- -Minimal airflow
- -Small footprint
- Requires exhaust connection

Large Canopy Hood

- Heat Removal
- Energy Hog

Exhaust Snorkel Hoods

- –Low-hazard application
- -Tasked device for vapors, e.g. soldering
- –Close damper when not in use

Ventilated Enclosure

- Minimal airflow volume
- Infrequently accessed
- Requires external exhaust
- Can reduce lab hazard classification

Variable Air Volume Fume Hoods:

- Decrease laboratory exhaust flow rate
- Decrease conditioned supply air
- Reduces heating and cooling costs
- Reduces supply and exhaust fan horsepower
- Monitor sash position remotely
- Check face velocity and laboratory pressurization
- Provided constant face velocity control

VAV Hood Operation

Does the Low Flow / Low Velocity Hood provide:

- Equivalent or Better Containment at Reduced Face Velocities and Flow Volumes?
- Improved performance for all users, even under misuse conditions?
- More Robust and Less Susceptible to External Factors?
- Better Monitoring and Flow Control?

If so... = High Performance Hood

- High-Performance Hood: Improved Performance Through Better Design...
 - Aerodynamic Entry
 - Directed Air Supply
 - Perforated or Slotted Rear Baffle
 - Airfoil Sill and Sash Handle
 - Integrated Monitors
 - Interior Dimensions

- High Performance Fume Hoods: current fabricators...
 - Lab Crafters
 - Labconco
 - Fisher Hamilton
 - Kewaunee Scientific
 - Laboratory Equipment Manufacturers
 - Berkeley Hood
 - Others

Fisher Hamilton PIONEER

- Automatic sash closer
- Directed supply flow @ full open sash
- Flush Airfoil Sill

Berkeley Hood by LBNL

- Air Divider Technique
- Perimeter Air Supply
- Perforated Rear Baffle
- Slot Exhaust
- Optimized Upper Chamber
- Designed to minimize escape by reducing reverse flow

Zone Occupancy Sensor Sash Sensor/Monitor

Selection Process

Basic approach for safe and efficient results...

Selection Process...

Understand Hazards and Exhaust Device Use

- Type of Hazards
- Frequency of Use: Dose
- Duration of Use: Dose
- Hazard Generation Characteristics
- Effluent Characteristics

Selection Process...

- Select Appropriate Laboratory Exhaust Device
 - Type
 - Size
 - Quantity
 - Manufacturer & Model
 - Operational Specifications
 - Constraints and Limitations

Re-check Hood and System is suitable for the intended application

Selection Process...

Key Factors Affecting Laboratory Exhaust Device Performance...

- Design features and installation
- Lab design and layout
- Ventilation system design (diffusers) and operation
- Worker population and practices
- Traffic patterns
- Proximity to room egress
- Laboratory equipment operation

Standard Design Practice

Choose Device...

- Number
- Placement
- Features (verify with user)
- Chemical Resistance

Commissioning Requirements...

- Volume Flow Check (TAB)
- Face Velocity Testing (per authority having jurisdiction)
- Certification (if required)
- EMCS tie-in (if available)

Good Design Practice

Choose efficient device...

- VAV hood Low-Flow hood
- Consider alternative devices

Consider aspects of air management...

- Supply air temperature rate of change
- Diffuser type and air "throw"

Require full ANSI/ASHRAE 110 testing as installed...

- Tracer gas containment
- Sash movement effect

Conduct Operational Assessment Commissioning...

- Room differential pressure tests
- VAV hood recovery tests (from unusual user interface, e.g., door slams)

Better Design Practice

Perform Computational Fluid Dynamic (CFD) Modeling...

- Model hood containment
- Simulate lab space during spill event

Conduct advanced containment tests...

- Human-as-Mannequin (HAM) tests
- Walk-up, walk-by tests

Require Performance Measurement Commissioning...

- Simulate "stress conditions", e.g., whole building power failure
- Test entire facility's "harmony"

Arrange Efficiency Assurance Commissioning...

- Verify energy efficiency measures
- Seasonal, full occupancy check

Performance Example: Good Practice

Observing reverse airflow during ANSI/ASHRAE smoke tests

Performance Example: Good Practice

ASHRAE 110 Tracer Gas Test

Center position

Right position

Preparing for Human-as-Mannequin tests

Tracer gas detector mounted on human

Objects to be manipulated

Conducting Human-as-Mannequin tests

CFD Fume Hood Models

Two-dimensional CFD

Three-dimensional CFD

CFD Lab Models

Princeton University

Conclusion

Design Mission a Success…?

- Increased operational safety significantly
- Advanced Ergonomics
- Minimized effects from external factors
- Provided remote Monitoring and Control

Performance bottom line...

- Improved Containment
 - At Face Velocities of 50-60 fpm
 - With Full Range of Sash Opening
 - Independent of User Height

Conclusion

Summary Recap:

- Design Considerations
- Device Review
- Selection Process
- Design Practice

Primary Issues:

- Safety Crucial reason for lab exhaust devices Removal of Hazard.
- Temperature and humidity control heat gain from equipment, computers, people.
- Productivity of facility support mission.
- Cost to Design; to Build; to Operate.

Conclusion

It's a Combined Effort – A sustainable, energy-efficient facility requires teamwork involving:

- A "user" representative that understands the scientific research.
- A facilities representative that understands the building's HVAC systems.
- An industrial hygiene representative that understands worker health and safety issues.
- A laboratory design representative that understands exhaust device designs and features.

For More Information

Main Labs21 web site:

http://www.labs21century.gov

Primary Contacts:

Geoffrey C. Bell, P.E.

Lawrence Berkeley National Laboratory

Phone: 510 486-4626

Fax: 510 486-4089

E-mail: gcbell@lbl.gov

Otto Van Geet, P.E.

National Renewable Energy Laboratory

Phone: 303 384-7369

Fax: 303 384-7330

E-mail: otto_vangeet@nrel.gov

